如何加强自媒体平台舆情监测?

舆情百科 07-20 11:03 0

伴随着移动互联网应用不断向社会各层面渗透,网络舆论的格局发生了很大变化,如网民结构与社会人口结构趋同,网民产生代际更新导致网络流行议题和文化热点发生转换,微博、微信平台化,专业自媒体步入兴盛等。


在社交媒体平台上,自媒体呈现出来的话语体系最为庞杂。许多舆情信息不仅包含结构化数据,还涉及大量非结构化数据,若对其准确性、真实性逐一核查,既耗费人力又耗费时间。就内容而言,较多负面、虚假舆情具有较强的隐蔽性,单纯以关键词或主题词进行搜索容易产生误判、遗漏,话语体系的不可控性增加了舆情监测工作的难度。


如何加强自媒体平台舆情监测?


“智能化舆情管理是行业发展的必然。伴随着自媒体、移动端的快速发展,在不到10年的时间里,每日舆情数据总量从百万级扩展到千万级,当前已经达到亿级。如此庞大的舆情信息,远远超过正常阅读的极限,要对海量的信息进行分析,势必要使用人工智能技术对舆情信息进行处理和研判。”


人工智能技术的介入将有利于对信息进行挖掘、采集、分类、整理,从而找寻出最核心的关键性数据。借助人工智能技术及大数据分析技术网络舆情信息的研究视角将透过内容层面深入到关系层面,转向对网络受众社会心理描绘、社会关系呈现、社会话语表达等多维度的研究。


当前的网络舆情监测工作主要通过对当下网络舆情的动态信息进行随机采样来收集、整理、分析,更多的是关注已经发生的事件在过去及当下的动向,对未来的发展预测难以兼顾。而借助人工网络预测模型,通过自然语言处理、模式识别及机器学习等人工智能技术,可以对网络舆情的性质、发展趋势进行正确描述,再结合大数据分析处理整群数据来实现预测功能。

该文观点仅代表作者本人
推荐文章(2)
换一换
028-6139-7612
联系电话
联系电话
企业微信
企业微信
企业微信
返回顶部